An interesting 1,2,4-triazole-furazan system: a new family of insensitive energetic materials

Hualin Xiong¹, Hongwei Yang¹, Guangbin Cheng¹

¹ School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China

Introduction

Several efficient ways to achieve the balance between energetic and sensitivity have been well-established: a) formation of energetic salts; b) layer-by-layer stacking; c) blending of energetic rings using alkyl bridges; d) 3D metal organic frameworks; e) cocrystallization; f) intramolecular hydrogen bonds. The nitrogen-rich energetic salts are the hottest topics and these salts with high energy and low sensitivity are important in energetic materials. As we know the introduction of amino groups has a positive effect resulting in an increase in detonation performance and safety. Herein, we report a series of energetic salts based on 3-nitramino-4-(4-nitramino-5-amino-1,2,4-triazol-3-yl)furazan with a system that comprises both nitro and amino groups. Hydroxylammonium salt has good thermal stability, high detonation performance and low sensitivity.

compound	$T_{\rm m}^{\ a}$ [°C]	<i>T</i> _d ^b [℃]	ρ^{c} [g cm ⁻³]	$\Delta H_{\rm f}^{\rm d}$ [kJ mol ⁻¹]/[kJ g ⁻¹]	D^{e} [m s ⁻¹]	P ^f [GPa]	IS ^g [J]	FS ^h [N]
6	69	184	1.767	733.7/2.08	9165	36.1	40	360
7	_	222	1.732	957.9/2.85	9239	33.9	40	360
8	_	208	1.727	591.5/1.93	8912	33.2	>40	>360
9	_	204	1.701	729.5/2.20	8557	28.8	>40	>360
10	155	214	1.703	917.5/2.65	8749	30.2	>40	>360
11	_	139	1.7	1035.5/3.03	8525	29.3	>40	>360
12	_	208	1.698	1015/2.85	8466	28.3	>40	>360
13	_	202	1.680	1133.5/3.18	8536	29.0	>40	>360
14	166	204	1.691	886.1/2.45	8514	39.1	>40	>360
15	_	186	1.719	934.5/2.59	8732	30.2	>40	>360
16	_	188	1.654	1041.1/2.77	8655	28.8	>40	>360
17	_	184	1.741	632.4/1.96	8803	31.3	>40	>360
TATB	_	360	1.930	-137.5/-0.54	8114	31.2	50	>360
RDX		204	1.800	70.3/0.32	8795	34.9	7.4	120
HMX		287	1.905	74.8/0.25	9144	39.5	7.4	120

Scheme 2 Syntheses of 3-nitramino-4-(4- nitramino-5-amino-1, 2, 4- triazol-3-yl)furazan and nitrogen-rich salts of 3-nitramino-4-(4- nitramino-5-amino-1,2,4-triazol-3-yl)furazan under different conditions

\sim		
	\sim	

^a Melting point. ^b Decomposition temperature ^c Density measured using a gas pycnometer (25 ° C).^dHeat of formation. ^e Calculated detonation velocity. ^f Calculated detonation pressure ^g Impact sensitivity. ^h Friction sensitivity.

Physical and Chemical Properties

The decomposition temperatures of the salts ranged from 139 (**11**) to 222 $^{\circ}$ C (**7**). Neutral compound has a low decomposition temperatures of 114 $^{\circ}$ C . Hydrazinium salt 7 is the most thermally stable (222 $^{\circ}$ C). The calculated detonation velocities lie in the range between 8514 and 9239 m s-1 All compounds (**5-17**) possess good impact and friction sensitivities, which up to 35 J and 360 N, respectively. The most promising compound for industrial scale-up and practical use is the Hydrazinium salt **7**, which has acceptable density (1.732 g cm⁻³), lower sensitivities (40 J, 360 N), good detonation pressure (33.9 GPa) and (9239 m s⁻¹). The combination of exceedingly high performance properties, which are comparable to those of HMX.

Scheme 3 Synthesis of Hydroxylammonium Ammonium 3-nitramino-4-(4-nitramino-5-amino-1,2, 4-triazol-3-yl)furazan

Crystal Structure

Acknowledgement

This project is supported by the National Natural Science Foundation of China (No. 21376121, 21676147), the Natural Science Foundation of Jiangsu

